An Additive Schwarz Algorithm for Piecewise Hermite Bicubic
نویسندگان
چکیده
An overlapping domain decomposition, additive Schwarz, conjugate gradient method is presented for the solution of the linear systems which arise when orthogonal spline collocation with piecewise Hermite bicu-bics is applied to the Dirichlet problem for Poisson's equation on a rectangle .
منابع مشابه
H1-norm Error Bounds for Piecewise Hermite Bicubic Orthogonal Spline Collocation Schemes for Elliptic Boundary Value Problems
Two piecewise Hermite bicubic orthogonal spline collocation schemes are considered for the approximate solution of elliptic, self-adjoint, nonhomogeneous Dirichlet boundary value problems on rectangles. In the rst scheme, the nonhomogeneous Dirichlet boundary condition is approximated by means of the piecewise Hermite cubic interpolant, while the piecewise cubic interpolant at the boundary Gaus...
متن کاملMultilevel Preconditioners for Non-self-adjoint or Indefinite Orthogonal Spline Collocation Problems
Efficient numerical algorithms are developed and analyzed that implement symmetric multilevel preconditioners for the solution of an orthogonal spline collocation (OSC) discretization of a Dirichlet boundary value problem with a non–self-adjoint or an indefinite operator. The OSC solution is sought in the Hermite space of piecewise bicubic polynomials. It is proved that the proposed additive an...
متن کاملFourier Methods for Piecewise Hermite Bicubic Or- Thogonal Spline Collocation
| Matrix decomposition algorithms employing fast Fourier transforms were developed recently by the authors to solve the systems of linear algebraic equations that arise when piecewise Hermite bicubic orthogonal spline collocation (OSC) is applied to certain separable elliptic boundary value problems on a rectangle. In this paper, these algorithms are interpreted as Fourier methods in analogy wi...
متن کاملOrthogonal Spline Collocation Laplace-modified and Alternating-direction Methods for Parabolic Problems on Rectangles
A complete stability and convergence analysis is given for twoand three-level, piecewise Hermite bicubic orthogonal spline collocation, Laplacemodified and alternating-direction schemes for the approximate solution of linear parabolic problems on rectangles. It is shown that the schemes are unconditionally stable and of optimal-order accuracy in space and time.
متن کاملA Domain Decomposition Preconditioner for Hermite Collocation Problems
We propose a preconditioning method for linear systems of equations arising from piecewise Hermite bicubic collocation applied to twodimensional elliptic PDEs with mixed boundary conditions. We construct an efficient, parallel preconditioner for the GMRES method. The main contribution of the paper is a novel interface preconditioner derived in the framework of substructuring and employing a loc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1994